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Abstract

Lam's phenomenological ¢-renormalization group (RNG) model is quite different from

the other members of that group. It does not make use of the correspondence principle and

the e-expansion procedure. In this report, we demonstrate that Lam's _-RNG model [Phy.s.

Fluids A, 4, 1007 (1992)] is essentially the physical space version of the classical closure

theory [Leslie and Quarini, J. Fluid Mech., 91, 6.5 (1979)] in spectral space and consider the

corresponding treatment of the eddy viscosity and energy backscatter.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





Introduction

In this note, we demonstrate that Lam's _-RNG model 1 is essentially the physical space

version of the classical closure theory 2 in spectral space and consider the corresponding

treatment of the eddy viscosity and energy backscatter.

Analysis

The incompressible N-S equations are

Ov 1--+v-Vv=- Vp+v0V2v (1)
Ot p

where _0 is the molecular viscosity, p is the density, and p is the pressure and can be

determined from (1) using V. v = 0. The external driving force that sustains the turbulence

and which acts in the very small wavenumber region is not included in (1) since it plays no

part in the energy cascade process in the inertial range 2.

As in both closure and RNG theories, the velocity field is filtered into two components

v=v <+v >, p=p<+p> (2)

where the Fourier-transformed fields

v<(k,t) = G(k)vi(k,t), (3)

v/>(k, t) = (1 - G(k))vi(k,t). (4)

The sharp cut-off filter of classical closure theory is exactly the same as the RNG technique

of separating the subgrid from the resolvable scales at the cutoff wavenumber A

G(k)= {01 ififk<A.7" >A ; (4)

In the classical closure theory of Leslie and Quarini (LQ) 2, the filtered N-S equation is

,E(k)]k 2 t,_<(k, M<,o->(k) )v_<(q, l) -4- .L(k, t+t,,o+), ,I:



where M_e.y(k) is the standard nonlinear coupling coefficient 2,a. For convenience we have

added to both sides a wavenumber dependent turbulent eddy viscosity rE(k), which is at the

moment unspecified. The term f(k, t) accounts for the Reynolds stress 2'4,

the cross stress 2'4,

C,_.y = t, ff(p,t)v_>(q,t)+ v_(p,t)v¢(q,t)

and the added eddy viscosity uE(k) :

(6)

(7)

M_._(k) f dpdq[C,_ + R_.y]. (8)f_(k, t) vE( k)k2v<(k, t) +

In (6)-(7), IP + ql < A. It is important to realize that no random force has been inserted

here.

In the Lain approach to e -RNG 1, one works in physical space rather than wavenumber

space. The exact resolvable scale Navier-Stokes equations can be written

E0__ot -(_0 + ._)V'lv < = -lvp< - v. (v<v<)+ gj_S, (9)
p

where gf=St is defined by

gS_' = V. (v<v < - vv) -/}TV2V < = _-7. (2v>v < -- v>v >) _ PTV2V. (10)

Note that Lam has introduced a k-independent turbulent eddy viscosity, ur,which remains

to be chosen, g f"_t is generated by the filtering process. The term gf"_ in physical space

corresponds to the term f(k, t) in wavenumber space, in Eq. (8).

The classical theory proceeds from this point by the use of certain "closure approximations" 2,3

An equation for the resolvable spectral energy,/)(k, t), can readily be derived,

[0 + 2Uok2]E(k,t)= ]'(k,t) + T>(k,t), (11)



whereT(k, t) is the resolvable scale energy transfer and T>(k, t) is the energy transfer caused

by the cross and Reynolds stresses 2 which can be put into the form 2's

- t) + tr(1,-). (12)

U(k), which represents the backscatter of energy from small to resolvable scales and is also

the spectrum of the correlation function of f, is given by

fx d pd qB( k' p' q )E(p)E( q )G2( k )[1 - G(p)G( q)]. (13)U(k)

vd(k,t), the drain eddy viscosity, is given by

d pdqA( k,p, q)E(q)[1 - G(p)a(q)]. (14)l/d( __ )

The integration domain is denoted by the expression A in which p and/or q > A. The

explicit functional forms of A and B appearing in (13)-(14) are given in Leslie 3 and LQ 2.

Instead of trying to compute g fast using closure approximations, Lam I simply tries to

model its correlation function based on physical arguments. In his view, f is simply a guess

of what gf_t should be for k _ A in the resolvable scale Navier-Stokes equation. He noted

that in the absence of f, the energy spectrum of the flow, computed from (5) driven by initial

and/or boundary conditions, will have a Kolmogorov dissipation wavenumber substantially

smaller than A. The primary role of f is to extend for the resolvable scale velocity field the

inertial range with a guaranteed Kolmogorov scaling for k _ A and beyond.

The forcing function in classical closure theory arises from filtering at the small scales.

In modeling the correlation flmction of f, Lam 1 assumes the form

' ' 2-_-;" l---_k-d+4-_(27r_d+lP..(k)(5(k+k')_5(w+w') (15)
< f_(k,.J)fj(k,_ )>= II3...A4__ , , _3

where a_ is frequency, S is the dissipation rate, d is the dimension of the physical space, Ha is

a constant, and Pij(k) = 6;j - kikj/k _. A multiplicative factor involving A 4-_ is introduced



to maintain dimensional consistencyfor arbitrary _. It is of someinterest to compareEq.

(15) with the forcing correlation function introduced by Yakhot and Orszag(YO)6

2 -d+4-e

< L(k,w)L(k',w' ) >= -_$tc (27r)d+ipij(k)(_(k + k')6(w + ,/), (16)

where O is a known constant determined by 2DoSd/(27c) TM = 1.594$ (YO 6) and Sd is the

area of a d-dimensional unit sphere. This form r is assumed to arise from forcing at k = 0 :

< ff >= 6(k)gS(k + k') (17)

with the use of Gel'fand's 5-function representation in the limit of e --+ 4 and k --+ 0

(_(k) = lira4(4 - ¢)k '-_. for k --* 0 (18)
e 4

To recover (16), it appears that (18) needs to be applied for k :fi 0, without the (4-e) factor.

Lam pointed out that the forcing correlation function, Eq. (15), should peak around

A; that its magnitude should be small for small k by an appropriate choice of _'T; and

that its behavior for k >> A is unimportant and irrelevant for the evolution of the resolved

modes, lVlost importantly, the correlation function now depends on A, while in e-RNG 6-7,

the correlation function is assumed to be "scale invariant". The dimensionless parameter e

in the correlation function is now available as a freely adjustable parameter, and Lain used

it to make the "predicted value" of Kolmogorov constant acceptable. He showed that either

e = 0 or e = 0.923 yield good results.

The stochastic backscatter f, for isotropic homogeneous turbulence in three dimensions,

has a k 4 spectrum to lowest order in wavenumber k (e.g., Ref. 5). Specifically,

iA _ for k -," O. (19)U(k) = 14k41,5 dpOk,p,q(t) p2
[E(p)] 2

where Ok,p,q(t) = 1/[#k,p,q(t) + Uo(k 2 + p2 + q2)] and ttk,p,q(t) is an "eddy-damping rate" of the

third-order moments associated with the wavevectors k, p, and q.



Thus, Lam's postulate (which wasbasedon intuitive physical arguments) that U(k) is

small for small k is consistent with classical closure theory.

The advantage of the classical theory is that tile energy equation is always satisfied and

no restriction on the magnitude of A is imposed--so long as A is in the inertial range. On

integrating (11) with respect to k for 0 < k < A, we obtain:

OK
- n - E. (20)

Ot

where K is the integral of/_(k) over the resolved wavenumbers, and S is defined by:

/o /oE - T>(k)dk = 2k2._(k)_?(k)dk. (21)

and 1=I,the resolved energy transfer term, is given by:

LI) = 2(k)dk.

The net eddy viscosity, un(k,t), is defined 2'5's-9 as

,_(k) _--,_(k)- ,b(k). (22)

and ub(k, t), the back-scatter viscosity, is given by

_b(k) ---U(k)/(2k't?(k)). (23)

From (14) and (23), one can show 1° that for k in the inertial range and k << A, the ratio of

ub(k) to ug(k) is equal to 14(k/A)H/z. Spectral large-eddy simulations (LES) of Lesieur and15

Rogallo saa was based on the resolvable scale Navier-Stokes equation

(_-Tt + [u0 + u.(k)]k2)v<_(k,t)= M.a.(k)i i dpdqv_(p,t)v<_(q,t) • (24)

Lam emphasized that _', the energy dissipation rate of the turbulent flow in question,

must be related to the parameters of the turbulent eddies by an ad hoc postulate under his

formulation. Lam's choice I is



_0 AEL = lira 2uT(A) k2E(k)dk. (25)
A----,oo

The large A limiting process in (25) is needed to ensure that the dissipation rate can be

adequately evaluated using information available from the resolved modes alone. In Lam's

approach, the value of A must be sufficiently large such that the dissipation function gL as

given by (25) is independent of A. In physical variables, EL is defined by:

/2G/
eL =- .r(a) \ /

The Smagorinsky result for UT is recovered if gL is eliminated between (26) and ur(h) =

C_,E1L/3A -4/3. In LES, the Lain requirement that h must be large enough is equivalent to

requiring that (26), computed using data only from resolved modes, be "grid size" inde-

pendent. In Lam's view, an LES calculation must exhibit a Kolmogorov spectrum using

the resolved modes such that the limiting process in (25) is respected. If it does not, then

the calculation would have no theoretical standing. Physically, if A is sufficiently large (so

that EL is independent of A), the contribution of back scattering to the dissipation would be

negligible. The random force f, the surrogate of the g/_t does not appear explicitly in the

final LES model of Lam and one needs only to provide a profile of < ff > so as to introduce

the adjustable parameter _ used in computing uT.

Conclusion

Thus, we find that Lam's formulation of e-RNG 1 is essentially the physical space version

of the spectral classical closure theory 2 with un(k) being replaced by a phenomenological

It-independent _'r, but which now depends on arbitrary parameter e.
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